Publications
-
Adaptive Sampling to Reduce Disparate Performance
Jacob Abernethy, Pranjal Awasthi, Matthäus Kleindessner, Jamie Morgenstern, Jie (Claire) Zhang
arXiv, 2020
-
Value Alignment Verification
Daniel S. Brown, Jordan Schneioder, Scott Niekum
NeurIPS, 2020
-
Superpolynomial Lower Bounds for Learning One-Layer Neural Networks using Gradient Descent.
Surbhi Goel, Aravind Gollakota, Zhihan Jin, Sushrut Karmalkar, Adam Klivans
ICML, 2020
-
Kernel and Rich Regimes in Overparametrized Models
Blake Woodworth, Suriya Gunasekar, Jason D. Lee, Edward Moroshko, Pedro Savarese, Itay Golan, Daniel Soudry, Nathan Srebro
PMLR, 2020
-
RIDM: Reinforced Inverse Dynamics Modeling for Learning from a Single Observed Demonstration
Brahma Pavse, Faraz Torabi, Josiah Hanna, Garrett Warnell, and Peter Stone
IROS, 2020
-
Reducing Sampling Error in Batch Temporal Difference Learning
Brahma Pavse, Ishan Durugkar, Josiah Hanna, and Peter Stone
ICML, 2020
-
The EMPATHIC Framework for Task Learning from Implicit Human Feedback
Yuchen Cui, Qiping Zhang, Alessandro Allievi, Peter Stone, Scott Niekum, W. Bradley Knox
CRL, 2020
-
On Sampling Error in Batch Action-Value Prediction Algorithms
Brahma S. Pavse, Josiah P. Hanna, Ishan Durugkar, and Peter Stone
NeurIPS, 2020
-
Learning and Reasoning for Robot Dialog and Navigation Tasks
Keting Lu, Shiqi Zhang, Peter Stone, and Xiaoping Chen
July, 2020
-
Deep R-Learning for Continual Area Sweeping
Rishi Shah, Yuqian Jiang, Justin Hart, and Peter Stone
IROS, 2020
-
Tracking Objects as Points
Xingyi Zhou, Vladlen Koltun, Philipp Krähenbühl
ECCV, 2020
-
Jointly Improving Parsing and Perception for Natural Language Commands through Human-Robot Dialog
Jesse Thomason, Aishwarya Padmakumar, Jivko Sinapov, Nick Walker, Yuqian Jiang, Harel Yedidsion, Justin Hart, Peter Stone, and Raymond J. Mooney
JAIR, 2020
-
Firefly Neural Architecture Descent: a General Approach for Growing Neural Networks
Lemeng Wu, Bo Liu, Peter Stone, and Qiang Liu
NeurIPS, 2020
-
Good Subnetworks Provably Exist: Pruning via Greedy Forward Selection
M. Ye, G. Gong, L. Nie, D. Zhou, A. Klivans, Q. Liu
ICML, 2020
-
Faster Johnson-Lindenstrauss Transforms via Kronecker Products
Ruhui Jin, Tamara G. Kolda, Rachel Ward
arXiv, 2020
-
Grounded Human-Object Interaction Hotspots from Video
T. Nagarajan, C. Feichtenhofer, K. Grauman
ICCV, 2019, 2019
-
Efficient Algorithms for Smooth Minimax Optimization
Kiran Koshy Thekumparampil, Prateek Jain, Praneeth Netrapalli, Sewoong Oh
arXiv, 2019
-
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
Simon S. Du, Xiyu Zhai, Barnabas Poczos, Aarti Singh
ICLR, 2019