Publications
Harmonic Decompositions of Convolutional Networks
Meyer Scetbon, Zaid Harchaoui
ICML, 2020
Measuring Robustness to Natural Distribution Shifts in Image Classification
Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, Ludwig Schmidt
arXiv, 2020
The PETLON Algorithm to Plan Efficiently for Task-Level-Optimal Navigation
Shih-Yun Lo, Shiqi Zhang, and Peter Stone
JAIR, 2020
A Penny for Your Thoughts: The Value of Communication in Ad Hoc Teamwork
Reuth Mirsky, William Macke, Andy Wang, Harel Yedidsion, and Peter Stone
IJCAI, 2020
Is a Good Representation Sufficient for Sample Efficient Reinforcement Learning
Simon S. Du, Sham M. Kakade, Ruosong Wang, Lin F. Yang
ICLR, 2020
Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey
Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, and Peter Stone
JMLR, 2020
End-to-End Learning for Retrospective Change-Point Estimation
Corinne Jones, Zaid Harchaoui
MLSP, 2020
Good Systems, Bad Data? Interpretations of AI Hype and Failures
Stephen C. Slota, Kenneth R. Fleischmann, Sherri Greenberg, Nitin Verma, Brenna Cummings, Lan Li, Chris Shenefiel
asis&t, 2020
Generalizing Curricula for Reinforcement Learning
Sanmit Narvekar and Peter Stone
ICML, 2020
First-order Optimization for Superquantile-based Supervised Learning
Yassine Laguel, Jérome Malick, Zaid Harchaoui
MLSP, 2020
Is Reinforcement Learning More Difficult Than Bandits? A Near-optimal Algorithm Escaping the Curse of Horizon
Zihan Zhang, Xiangyang Ji, Simon S. Du
arXiv, 2020
Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences
Daniel S. Brown, Russell Coleman, Ravi Srinivasan, Scott Niekum
ICML, 2020
Learning Deep ReLU Networks is Fixed Parameter Tractable
Sitan Chen, Adam R. Klivans, Raghu Meka
arXiv, 2020
Learning to Improve Multi-Robot Hallway Navigation
Jin-Soo Park, Brian Tsang, Harel Yedidsion, Garrett Warnell, Daehyun Kyoung, and Peter Stone
CoRL, 2020
Entanglement is Necessary for Optimal Quantum Property Testing
Sebastien Bubeck, Sitan Chen, Jerry Li
arXiv, 2020
Adaptive Sampling to Reduce Disparate Performance
Jacob Abernethy, Pranjal Awasthi, Matthäus Kleindessner, Jamie Morgenstern, Jie (Claire) Zhang
arXiv, 2020
Value Alignment Verification
Daniel S. Brown, Jordan Schneioder, Scott Niekum
NeurIPS, 2020
Superpolynomial Lower Bounds for Learning One-Layer Neural Networks using Gradient Descent.
Surbhi Goel, Aravind Gollakota, Zhihan Jin, Sushrut Karmalkar, Adam Klivans
ICML, 2020