Publications
-
Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey
Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, and Peter Stone
JMLR, 2020
-
End-to-End Learning for Retrospective Change-Point Estimation
Corinne Jones, Zaid Harchaoui
MLSP, 2020
-
Good Systems, Bad Data? Interpretations of AI Hype and Failures
Stephen C. Slota, Kenneth R. Fleischmann, Sherri Greenberg, Nitin Verma, Brenna Cummings, Lan Li, Chris Shenefiel
asis&t, 2020
-
Generalizing Curricula for Reinforcement Learning
Sanmit Narvekar and Peter Stone
ICML, 2020
-
First-order Optimization for Superquantile-based Supervised Learning
Yassine Laguel, Jérome Malick, Zaid Harchaoui
MLSP, 2020
-
Is Reinforcement Learning More Difficult Than Bandits? A Near-optimal Algorithm Escaping the Curse of Horizon
Zihan Zhang, Xiangyang Ji, Simon S. Du
arXiv, 2020
-
Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences
Daniel S. Brown, Russell Coleman, Ravi Srinivasan, Scott Niekum
ICML, 2020
-
Learning Deep ReLU Networks is Fixed Parameter Tractable
Sitan Chen, Adam R. Klivans, Raghu Meka
arXiv, 2020
-
Learning to Improve Multi-Robot Hallway Navigation
Jin-Soo Park, Brian Tsang, Harel Yedidsion, Garrett Warnell, Daehyun Kyoung, and Peter Stone
CoRL, 2020
-
Entanglement is Necessary for Optimal Quantum Property Testing
Sebastien Bubeck, Sitan Chen, Jerry Li
arXiv, 2020
-
Adaptive Sampling to Reduce Disparate Performance
Jacob Abernethy, Pranjal Awasthi, Matthäus Kleindessner, Jamie Morgenstern, Jie (Claire) Zhang
arXiv, 2020
-
Value Alignment Verification
Daniel S. Brown, Jordan Schneioder, Scott Niekum
NeurIPS, 2020
-
Superpolynomial Lower Bounds for Learning One-Layer Neural Networks using Gradient Descent.
Surbhi Goel, Aravind Gollakota, Zhihan Jin, Sushrut Karmalkar, Adam Klivans
ICML, 2020
-
Kernel and Rich Regimes in Overparametrized Models
Blake Woodworth, Suriya Gunasekar, Jason D. Lee, Edward Moroshko, Pedro Savarese, Itay Golan, Daniel Soudry, Nathan Srebro
PMLR, 2020
-
RIDM: Reinforced Inverse Dynamics Modeling for Learning from a Single Observed Demonstration
Brahma Pavse, Faraz Torabi, Josiah Hanna, Garrett Warnell, and Peter Stone
IROS, 2020
-
Reducing Sampling Error in Batch Temporal Difference Learning
Brahma Pavse, Ishan Durugkar, Josiah Hanna, and Peter Stone
ICML, 2020
-
The EMPATHIC Framework for Task Learning from Implicit Human Feedback
Yuchen Cui, Qiping Zhang, Alessandro Allievi, Peter Stone, Scott Niekum, W. Bradley Knox
CRL, 2020
-
On Sampling Error in Batch Action-Value Prediction Algorithms
Brahma S. Pavse, Josiah P. Hanna, Ishan Durugkar, and Peter Stone
NeurIPS, 2020